Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Psychoanalytic Inquiry ; 42(3):186-193, 2022.
Article in English | ProQuest Central | ID: covidwho-1830485

ABSTRACT

Rather than attempting to review Hartmann’s extensive contributions to psychoanalytic theory, we are going to follow his example by suggesting a biological meta-theory for psychoanalysis, focusing in particular on adaptation, and also addressing “reality.” We introduce a nonlinear model that highlights the dyad as the common pathway for developmental change – such as the infant-caregiver dyad in early development and the patient-analyst dyad in psychoanalysis. Then we offer a clinical illustration from a child analytic case. We will close with some observations about “adaptation to reality” in remote child therapy during COVID.

2.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1463766

ABSTRACT

Commensal bacterium Clostridium paraputrificum J4 produces several extracellular chitinolytic enzymes including a 62 kDa chitinase Chit62J4 active toward 4-nitrophenyl N,N'-diacetyl-ß-d-chitobioside (pNGG). We characterized the crude enzyme from bacterial culture fluid, recombinant enzyme rChit62J4, and its catalytic domain rChit62J4cat. This major chitinase, securing nutrition of the bacterium in the human intestinal tract when supplied with chitin, has a pH optimum of 5.5 and processes pNGG with Km = 0.24 mM and kcat = 30.0 s-1. Sequence comparison of the amino acid sequence of Chit62J4, determined during bacterial genome sequencing, characterizes the enzyme as a family 18 glycosyl hydrolase with a four-domain structure. The catalytic domain has the typical TIM barrel structure and the accessory domains-2x Fn3/Big3 and a carbohydrate binding module-that likely supports enzyme activity on chitin fibers. The catalytic domain is highly homologous to a single-domain chitinase of Bacillus cereus NCTU2. However, the catalytic profiles significantly differ between the two enzymes despite almost identical catalytic sites. The shift of pI and pH optimum of the commensal enzyme toward acidic values compared to the soil bacterium is the likely environmental adaptation that provides C. paraputrificum J4 a competitive advantage over other commensal bacteria.


Subject(s)
Bacterial Proteins/metabolism , Chitin/metabolism , Chitinases/metabolism , Clostridium/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Chitinases/chemistry , Chitinases/genetics , Clostridium/growth & development , Clostridium/isolation & purification , Gastrointestinal Microbiome , Humans , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL